NAMA:	TINGKATAN: 5 <u>Ud</u>											
NO. KAD PENGENALAN												
SEKOLAH MENENGAH KEBANGSAAN ST. LUKE SRI AMAN												
PEPERIKSAAN PERCU	JBA	AN	N SI	PM	201	9						
Fizik Tingkatan Lima												4531/3

1 ½ Jam

Kertas 3

Satu jam tiga puluh minit

JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU

- 1. Tulis **nama, tingkatan** dan **nombor kad pengenalan** anda pada ruang yang disediakan.
- 2. Kertas soalan ini adalah dalam dwibahasa.
- 3. Calon dibenarkan menjawab keseluruhan atau sebahagian soalan sama ada dalam bahasa Inggeris atau bahasa Melayu.
- 4. Jawapan kepada **Bahagian A** hendaklah ditulis dalam ruang yang disediakan dalam kertas soalan.
- 5. Rajah tidak dilukis mengikut skala **kecuali** dinyatakan.
- 6. Markah maksimum yang diperuntukkan ditunjukkan dalam kurungan pada hujung tiap-tiap soalan atau
- 7. Penggunaan kalkulator saintifik yang **tidak** boleh diprogramkan adalah dibenarkan.

Untuk Kegunaan Pemeriksa								
Bahagian	Soalan	Soalan Markah Penuh						
	1	16						
Α	2	12						
D	3	12						
B	4	12						
		Jumlah :						

Kertas soalan ini mengandungi 9 halaman bercetak

Section A [28 marks] Answer all questions

1. A student carries out an experiment to investigate how the temperature of water increases with the time of heating.

Diagram 1.1 shows the set up of the apparatus for the investigation. Before the heater is switched on, the initial temperature, θ_0 , of the water is measured.

Diagram 1.2 shows meniscus of the mercury column in the thermometer.

A stopwatch and the heater are switched on simultaneously.

At time, t = 20 s, the temperature, θ , of the water is read on the thermometer.

Diagram 1.3 shows the meniscus of the mercury column in the thermometer.

The procedure is repeated for heating time, t = 40s, 60 s, 80 s, and 100s. The positions of the meniscus of the mercury column in the thermometer are shown in Diagrams 1.4, 1.5, 1.6 and 1.7.

 $\Delta \theta = \theta - \theta_o \qquad \qquad \Delta \theta = \theta - \theta_o$

= °C =

(a)	For t	he experiment described above, identify:	
	(i)	The manipulated variable :	[1 <i>mark</i>]
	(ii)	The responding variable :	[1 <i>mark</i>]
	(iii)	The constant variable :	[1 <i>mark</i>]
(b)	Base	ed on Diagram 1.2, determine the initial temperature, θ_o , of the water.	[1 <i>mark</i>]
		Initial temperature, $\theta_0 = \dots \circ C$	
(c)	Base	ed on Diagrams 1.3, 1.4, 1.5, 1.6 and 1.7.	
	(i)	Record the thermometer readings, θ , in the spaces provided.	[1 <i>mark</i>]
	(ii)	For each value of θ in 1(c)(i), calculate the temperature of water increases, $\Delta \theta$ by using t following equation: $\Delta \theta = \theta - \theta_{0}$	he
		Record the values of $\Delta \theta$ in the spaces provided on the diagram.	[2 marks]
	(iii)	Tabulate your results for all values of t, θ and $\Delta \theta$ in the space below.	[3 marks]

(d)	On the graph paper provided, plot a graph of $\Delta \theta$ against <i>t</i> .	[5 marks]
(e)	Based on your graph, state the relationship between $\Delta \theta$ and <i>t</i> .	[1 <i>mark</i>]

.....

4531/3

graph of $\Delta \theta$ against *t*

2. A student carried an experiment to investigate the relationship between the collector current, I_c and the base current, I_B of a transistor.

The result of this experiment is shown in the graph of I_C against I_B in Diagram 2.

Diagram 2

(a)	Base	on Diagram 2	
	(i)	State the relationship between I_C and I_B .	[1 <i>mark</i>]
	(ii)	Determine the value of I_C when $I_B = 10.0$ mA. Show on the graph how you determine the	e I _C . [3 marks]
		$I_{C.} = \dots$	
	(iii)	Calculate the gradient, m of the graph. Show on the graph how you determine m .	[3 marks]
		$m = \dots$	

(b) (i) By using the answer in a(iii) and formula $I_E = (m + 1)I_B$, calculate the value of I_E when $I_B = 25.0 \text{ mA}$. [2 marks]

 $I_{E\cdot} \hspace{0.1 cm} = \hspace{0.1 cm} \ldots \hspace{0.1 cm}$

(ii) The common base current gain, α is given by the formula : $\alpha = m \left(\frac{I_B}{I_E} \right)$ By using the answers in a(iii) and b(i), calculate the value of α when I_B = 25.0 mA.

[2 marks]

4531/3

 $\alpha = \dots$

(c) State one precaution steps that should be taken to improve the accuracy of the result in this experiment. [1 mark]

.....

Section B [12 marks] Answer any one question from this section

3. Diagram 3.1 and Diagram 3.2 show a worker pushing a wheelbarrow on soft ground. He noticed that the tyre sinks deeper into the ground when the wheelbarrow is loaded.

Based on the information and observation:

- (a) State one suitable inference. [1 mark]
- (b) State one suitable hypothesis that could be investigated. [1 mark]
- (c) With the use of apparatus such as plasticine, weights and other apparatus, describe one experiment to investigate the hypothesis stated in 3(b).
 In your description, state clearly the following:
 - (i) The aim of the experiment.
 - (ii) The variables in the experiment.
 - (iii) The list of apparatus and materials.
 - (iv) The arrangement of the apparatus.
 - (v) The procedure used in the experiment which should include one method of controlling the manipulated variable and one method of measuring the responding variable.
 - (vi) The way to tabulate the data.
 - (vii) The way to analyse the data.

[10 marks]

4. Diagram 4 shows the water wave propagated from the sea to the shore.

Based on the information and observation:

- (a) State one suitable inference. [1 mark]
- (b) State one suitable hypothesis that could be investigated. [1 mark]
- (c) With the use of apparatus such as a ripple tank, glass block and other suitable apparatus, describe one experiment to investigate the hypothesis stated in 4(b).
 In your description, state clearly the following:
 - (i) The aim of the experiment.
 - (ii) The variables in the experiment.
 - (iii) The list of apparatus and materials.
 - (iv) The arrangement of the apparatus.
 - (v) The procedure used in the experiment which should include one method of controlling the manipulated variable and one method of measuring the responding variable.
 - (vi) The way to tabulate the data.
 - (vii) The way to analyse the data.

[10 marks]

ENDS OF QUESTION PAPER

Peperiksaan Percubaan SPM 2019 Physics F5 (Paper 3) Answer scheme

									Mark	
(a)	(i)	Time (of l	heating)					1	
		(ii)	(ii) Temperature (of water increases)							
		(iii)	Mass of w	vater / specific l	heat capacity of	f water / power	of heater / en	ergy supply	1	
(b)	$\theta_{o} = 25 \text{ °C}$							1	
(c)	(i)								
				Diagram 1.3	Diagram 1.4	Diagram 1.5	Diagram 1.6	Diagram 1.7	2	
			θ / °C	32	39	46	53	60		
		(ii)	$\cdot \\ (\Delta \theta = \theta -$	- θ _o)						
				Diagram 1.3	Diagram 1.4	Diagram 1.5	Diagram 1.6	Diagram 1.7	2	
			$\Delta \theta / ^{o}C$	7	14	21	28	35		
(0))		•							
(c)		+	/ s		θ / °C		$\Delta \theta / {}^{o}C$	3	
				20		32		7		
				0		39		14		
				50 50		46		21		
				30		53		28		
				00		60		35		
			1							
(d)		oh of $\Delta \theta$ ag	-						
		Δθ	at vertical-a	axis and t at hor	rizontal-axis		\checkmark	7 ticks - 5 marks	5	
		cor	rect unit for	both axes			\checkmark	5-6 ticks - 4 marks		
		suit	able scale -	- both axes star	t from zero and	uniform scale	\checkmark	3-4 ticks - 3 marks		
		all the values plotted correctly $\sqrt{}$ best straight line $$						2 ticks - 2 marks		
							1 tick - 1 mark			
		size	e - min scale	e (10 x 8) cm			\checkmark			
(-			directly	oportional to t.					1	
(e	1		anceny pr						1	

2.	(a)(i)	$I_{\rm C}$ is directly proportional with $I_{\rm B}$	1
	(a)(ii)	$I_{\rm C} = 500 \text{ mA}$	1
		Extrapolation line	1
		Interpolation line	1
	(a)(iii)	Show triangle minimum 4 x 3	1
		Correct calculation:	
		500×10^{-3}	1
		$\overline{10.0 \times 10^{-3}}$	
		Correct answer:	1
		5	I
	(b)(i)	5	2
	(ii)	Correct calculation:	
		$=(5+1)(25 \times 10^{-3})$	1
		Correct answer:	
		$1.50 \ge 10^{-1}$	1
	(c)	Switch off the circuit when it is not in used to avoid overheating. //	
		The eyes should perpendicular to the scale reading of miliammeter to avoid parallax error.	1
			12
			L

			Suggested Answer		Marks	Notes
(a)	The dep	oth to which a ty	re sinks depends on its	1M	Base on observation	
(b)	The larg	ger the mass is, t	he greater the pressure	will be.	1M	Using M.V. and R.V.
(c)(i)	To inve	stigate the relation	onship between mass a	nd pressure	1 M	Using M.V. and R.V.
(ii)	M.V. :]	Mass	•	1M		
	R.V. : I	Depth of depressi	ion			
	C.V. : H	Height of the stee	el ball		1M	Physical quantity
(iii)	Plastici	ne, weight and m	netre rule		1M	List out the important
						apparatus and materials
(iv)	(iv)		bject (weight)		1 M	Functional experiment
			bjek (pemberat)			frame work with label.
			of on (permeeting)			
		me	etre rule			
		per	mbaris meter			
			plasticine			
		and the second second	plasticine			
(v)	Drop a	weight of 50 g or	n the surface of the plas	1M	State method of	
	Drop u	in ergine of 2 o g o	in the surface of the plan			controlling the M.V.
	Measur	e the depth of de	pression made on the p	1M	State the method of	
		•• •••••	procession manage on the p		measuring the R.V.	
	Repeat	the experiment 4	times with mass of 60	1M	Repeat the experiment at	
	g.				least 4 times with	
	8					different values
(vi)	(vi)	Magala	Derth	7	1M	State variables, symbols
	(1)	Mass/g	Depth/cm			and units.
		Jisim	Kedalaman	4		
		50				
		60				
		70				
		80		-		
		90		-		
	L					
(vii)	A graph	n of depth agains	t mass is plotted.		1 M	M.V. at x-axis,
						R.V. at y-axis
				Total	12M	

Section	Answer		Marks	Notes
(a)	The wavelength of the wave affect by the depth of the sea bad.		1M	Base on observation
(b)	The depth of the water increases, the wavelength of the water w increases.	ave	1 M	Using M.V. and R.V.
(c) (i)	To study the relationship between the depth of the water and the wavelength of the wave.	e	1 M	Using M.V. and R.V.
(ii)	Manipulated variable : The depth of water, d		1M	
	Responding variable : The wavelength of water wave, λ Constant variable : The frequency of the water wave		1M	Physical quantity
(iii)	Ripple tank, glass block,(ripple tank experiment) Stroboscope, metre rule		1M	List out the important apparatus and materials
(iv)	(functional diagram)		1 M	Functional experiment frame work with correct symbols.
(v)	(controlling MV) Measured depth of water, $d = 1.0$ cm using metre rule.		1 M	State method of controlling the M.V.
	The switch is closed and using the stroboscope to freeze the wa motion, mark the distance between two consecutive fringes and measured the wavelength using metre rule.		1 M	State the method of measuring the R.V.
	The experiment is repeated using depth of water 1.5 cm, 2.0 cm cm, 3.0 cm and 3.5 cm.	, 2.5	1 M	Repeat the experiment at least 4 times with different values
(vi)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1M	State variables, symbols and units.
(vii)	The graph of λ against <i>d</i> is plotted.		1 M	M.V. at x-axis, R.V. at y-axis
		Total	12M	